3.940 \(\int \frac{(a+b x^2+c x^4)^{3/2}}{x} \, dx\)

Optimal. Leaf size=155 \[ -\frac{1}{2} a^{3/2} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )-\frac{b \left (b^2-12 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{32 c^{3/2}}+\frac{\left (8 a c+b^2+2 b c x^2\right ) \sqrt{a+b x^2+c x^4}}{16 c}+\frac{1}{6} \left (a+b x^2+c x^4\right )^{3/2} \]

[Out]

((b^2 + 8*a*c + 2*b*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(16*c) + (a + b*x^2 + c*x^4)^(3/2)/6 - (a^(3/2)*ArcTanh[(2
*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/2 - (b*(b^2 - 12*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[
a + b*x^2 + c*x^4])])/(32*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.184235, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.35, Rules used = {1114, 734, 814, 843, 621, 206, 724} \[ -\frac{1}{2} a^{3/2} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )-\frac{b \left (b^2-12 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{32 c^{3/2}}+\frac{\left (8 a c+b^2+2 b c x^2\right ) \sqrt{a+b x^2+c x^4}}{16 c}+\frac{1}{6} \left (a+b x^2+c x^4\right )^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2 + c*x^4)^(3/2)/x,x]

[Out]

((b^2 + 8*a*c + 2*b*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(16*c) + (a + b*x^2 + c*x^4)^(3/2)/6 - (a^(3/2)*ArcTanh[(2
*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/2 - (b*(b^2 - 12*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[
a + b*x^2 + c*x^4])])/(32*c^(3/2))

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2+c x^4\right )^{3/2}}{x} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\left (a+b x+c x^2\right )^{3/2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{6} \left (a+b x^2+c x^4\right )^{3/2}-\frac{1}{4} \operatorname{Subst}\left (\int \frac{(-2 a-b x) \sqrt{a+b x+c x^2}}{x} \, dx,x,x^2\right )\\ &=\frac{\left (b^2+8 a c+2 b c x^2\right ) \sqrt{a+b x^2+c x^4}}{16 c}+\frac{1}{6} \left (a+b x^2+c x^4\right )^{3/2}+\frac{\operatorname{Subst}\left (\int \frac{8 a^2 c-\frac{1}{2} b \left (b^2-12 a c\right ) x}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{16 c}\\ &=\frac{\left (b^2+8 a c+2 b c x^2\right ) \sqrt{a+b x^2+c x^4}}{16 c}+\frac{1}{6} \left (a+b x^2+c x^4\right )^{3/2}+\frac{1}{2} a^2 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )-\frac{\left (b \left (b^2-12 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )}{32 c}\\ &=\frac{\left (b^2+8 a c+2 b c x^2\right ) \sqrt{a+b x^2+c x^4}}{16 c}+\frac{1}{6} \left (a+b x^2+c x^4\right )^{3/2}-a^2 \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^2}{\sqrt{a+b x^2+c x^4}}\right )-\frac{\left (b \left (b^2-12 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )}{16 c}\\ &=\frac{\left (b^2+8 a c+2 b c x^2\right ) \sqrt{a+b x^2+c x^4}}{16 c}+\frac{1}{6} \left (a+b x^2+c x^4\right )^{3/2}-\frac{1}{2} a^{3/2} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )-\frac{b \left (b^2-12 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{32 c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.140945, size = 143, normalized size = 0.92 \[ \frac{1}{96} \left (-48 a^{3/2} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )-\frac{3 b \left (b^2-12 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )}{c^{3/2}}+\frac{2 \sqrt{a+b x^2+c x^4} \left (8 c \left (4 a+c x^4\right )+3 b^2+14 b c x^2\right )}{c}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2 + c*x^4)^(3/2)/x,x]

[Out]

((2*Sqrt[a + b*x^2 + c*x^4]*(3*b^2 + 14*b*c*x^2 + 8*c*(4*a + c*x^4)))/c - 48*a^(3/2)*ArcTanh[(2*a + b*x^2)/(2*
Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])] - (3*b*(b^2 - 12*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^
4])])/c^(3/2))/96

________________________________________________________________________________________

Maple [A]  time = 0.168, size = 192, normalized size = 1.2 \begin{align*}{\frac{c{x}^{4}}{6}\sqrt{c{x}^{4}+b{x}^{2}+a}}+{\frac{7\,b{x}^{2}}{24}\sqrt{c{x}^{4}+b{x}^{2}+a}}+{\frac{{b}^{2}}{16\,c}\sqrt{c{x}^{4}+b{x}^{2}+a}}-{\frac{{b}^{3}}{32}\ln \left ({ \left ({\frac{b}{2}}+c{x}^{2} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{4}+b{x}^{2}+a} \right ){c}^{-{\frac{3}{2}}}}+{\frac{3\,ab}{8}\ln \left ({ \left ({\frac{b}{2}}+c{x}^{2} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{4}+b{x}^{2}+a} \right ){\frac{1}{\sqrt{c}}}}+{\frac{2\,a}{3}\sqrt{c{x}^{4}+b{x}^{2}+a}}-{\frac{1}{2}{a}^{{\frac{3}{2}}}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+b{x}^{2}+2\,\sqrt{a}\sqrt{c{x}^{4}+b{x}^{2}+a} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(3/2)/x,x)

[Out]

1/6*c*x^4*(c*x^4+b*x^2+a)^(1/2)+7/24*b*x^2*(c*x^4+b*x^2+a)^(1/2)+1/16/c*b^2*(c*x^4+b*x^2+a)^(1/2)-1/32/c^(3/2)
*b^3*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))+3/8*a*b*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))/c
^(1/2)+2/3*a*(c*x^4+b*x^2+a)^(1/2)-1/2*a^(3/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.49747, size = 1715, normalized size = 11.06 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x,x, algorithm="fricas")

[Out]

[1/192*(48*a^(3/2)*c^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) +
 8*a^2)/x^4) - 3*(b^3 - 12*a*b*c)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^
2 + b)*sqrt(c) - 4*a*c) + 4*(8*c^3*x^4 + 14*b*c^2*x^2 + 3*b^2*c + 32*a*c^2)*sqrt(c*x^4 + b*x^2 + a))/c^2, 1/96
*(24*a^(3/2)*c^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2
)/x^4) + 3*(b^3 - 12*a*b*c)*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*
x^2 + a*c)) + 2*(8*c^3*x^4 + 14*b*c^2*x^2 + 3*b^2*c + 32*a*c^2)*sqrt(c*x^4 + b*x^2 + a))/c^2, 1/192*(96*sqrt(-
a)*a*c^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 3*(b^3 - 12*a*
b*c)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c) + 4*(
8*c^3*x^4 + 14*b*c^2*x^2 + 3*b^2*c + 32*a*c^2)*sqrt(c*x^4 + b*x^2 + a))/c^2, 1/96*(48*sqrt(-a)*a*c^2*arctan(1/
2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + 3*(b^3 - 12*a*b*c)*sqrt(-c)*arct
an(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) + 2*(8*c^3*x^4 + 14*b*c^2*x^2
 + 3*b^2*c + 32*a*c^2)*sqrt(c*x^4 + b*x^2 + a))/c^2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2} + c x^{4}\right )^{\frac{3}{2}}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(3/2)/x,x)

[Out]

Integral((a + b*x**2 + c*x**4)**(3/2)/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x,x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)/x, x)